Development of Method for Complex Tissue Regeneration via Tissue Embryonization

Department of Plastic Surgery
University of Tokyo Hospital
Masakazu KURITA

Society 2040 Aimed at this research project

Tissue Embryonization

Inducing tissue similar to embryonic status via *in vivo* gene transduction

Skin & Muscle & Bone Rejuvenation

Society 2040 Aimed at this research project

Lost tissue and organ Lost youth

Pave the way towards reacquisition of irreversibly lost quality of life-associated functions.

Society 2040 Aimed at this research project

Limb regeneration
Rejuvenation of skin & fat
Rejuvenation of muscle & bone

Increase activity of society !!

Skin Ulcer

Pressure ulcer

Limb necrosis (ex. Vascular insufficiency)

Official character of Japan Society of Plastic and Reconstructive Surgery and Japan Society for Surgical Wound Care Fairly of Bandage named NAORUN

Life of mammals Oocyte Adult Zygote Morula Neonate Spermatozoa .0 **Embryo** Blastcyst Neuron Keratinocyte Ectoderm Cardiomyocyte Mesoderm Myocyte Chondrocyte Pluripotent Endothelial cell Endoderm stem cells **Fibroblast** ES cells iPS cells Adipose stromal cell **Embryonic** Cell differentiation progenitors

Direct reprogramming (Direct conversion)

(from Kurita et al. IGAKU-NO-AYUMI 2020 modified)

Direct reprogramming for prompt wound closure

(Kurita et al. 2018 Nature)

Direct reprogramming for better wound cure Regeneration of skin appendage

Limb regeneration via tissue embryonization

Summary of progression

- 1 Search for reprogramming factors
- 2 Development of new gene transduction method
- 3 Establishment of screening system
 - Try & error
- 4 Establishment of system for skin rejuvenation

Searching for reprogramming factors

Single cell RNA-seq analysis

New gene transduction method -Directed evolution-

(Lerch et al. 2012)

New gene transduction method -Biocompatible carrier-

New gene transduction method

Future perspective

Tissue embryonization for rejuvenation

Analyses of aged skin

Skin Tear

Collaborator

University of Tokyo Faculty of medicine

University of Tokyo Faculty of engineering

University of Tokyo Faculty of medicine

Osaka University
Institute for Advanced
Co-Creation Studies

Hironori Hojo

Bone regeneration

Bio infomatics

Takamasa Sakai Bio material

Gojiro Nakagami Geriatric nursing Nursing science and engineering

Keiichiro Suzukii Genome editing Molecular Biology

Hiroyuki Okada

Takuya Katashima Shohei Ishikawa Qin Qi Daijiro Haba Mao Kunimitsu

Outcome of this project

Regeneration of motor organ

Participation of disabled

Promotion of gene therapy Expansion to other integral organs

Participation of aged people

